Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microbiol Spectr ; 10(4): e0109722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2325199

RESUMEN

Human adenovirus type 26 (HAdV26) has been recognized as a promising platform for vaccine vector development, and very recently vaccine against COVID-19 based on HAdV26 was authorized for emergency use. Nevertheless, basic biology of this virus, namely, pathway which HAdV26 uses to enter the cell, is still insufficiently known. We have shown here that HAdV26 infection of human epithelial cells expressing low amount of αvß3 integrin involves clathrin and is caveolin-1-independent, while HAdV26 infection of cells with high amount of αvß3 integrin does not involve clathrin but is caveolin-1-dependent. Thus, this study demonstrates that caveolin-1 is limiting factor in αvß3 integrin-mediated HAdV26 infection. Regardless of αvß3 integrin expression, HAdV26 infection involves dynamin-2. Our data provide for the first-time description of HAdV26 cell entry pathway, hence increase our knowledge of HAdV26 infection. Knowing that functionality of adenovirus vector is influenced by its cell entry pathway and intracellular trafficking, our results will contribute to better understanding of HAdV26 immunogenicity and antigen presentation when used as vaccine vector. IMPORTANCE In order to fulfill its role as a vector, adenovirus needs to successfully deliver its DNA genome to the host nucleus, a process highly influenced by adenovirus intracellular translocation. Thus, cell entry pathway and intracellular trafficking determine functionality of human adenovirus-based vectors. Endocytosis of HAdV26, currently extensively studied as a vaccine vector, has not been described so far. We present here that HAdV26 infection of human epithelial cells with high expression of αvß3 integrin, one of the putative HAdV26 receptors, is caveolin-1- and partially dynamin-2-dependent. Since caveolin containing domains provide a unique environment for specific signaling events and participate in inflammatory signaling one can imagine that directing HAdV26 cell entry toward caveolin-1-mediate pathway might play role in immunogenicity of this virus. Therefore, our results contribute to better understanding of HAdV26 infection pathway, hence, can be helpful in explaining induction of immune response and antigen presentation by HAdV26-based vaccine vector.


Asunto(s)
Adenovirus Humanos , COVID-19 , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Vacunas contra la COVID-19 , Caveolina 1/genética , Caveolina 1/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Humanos , Integrinas/metabolismo , Internalización del Virus
2.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2267330

RESUMEN

A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.


Asunto(s)
Células Epiteliales Alveolares , Clatrina , Ratones , Animales , Células Epiteliales Alveolares/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Clatrina/metabolismo , Pulmón/metabolismo , Células Epiteliales/metabolismo , Albúmina Sérica/metabolismo , Alveolos Pulmonares/metabolismo
3.
J Virol ; 97(4): e0021023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2254654

RESUMEN

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Asunto(s)
Alphacoronavirus , Caveolas , Clatrina , Pinocitosis , Internalización del Virus , Proteínas de Unión al GTP rab , Alphacoronavirus/fisiología , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Infecciones por Coronavirus/metabolismo , Concentración de Iones de Hidrógeno , Dinaminas/metabolismo , Caveolas/metabolismo , Colesterol/metabolismo , Clatrina/metabolismo , Pinocitosis/fisiología , Células Vero , Chlorocebus aethiops , Animales
4.
J Virol ; 97(4): e0012823, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2264675

RESUMEN

Coronavirus membrane protein is a major component of the viral envelope and plays a central role in the viral life cycle. Studies of the coronavirus membrane protein (M) have mainly focused on its role in viral assembly and budding, but whether M protein is involved in the initial stage of viral replication remains unclear. In this study, eight proteins in transmissible gastroenteritis virus (TGEV)-infected cells coimmunoprecipitated with monoclonal antibodies (MAb) against M protein in PK-15 cells, heat shock cognate protein 70 (HSC70), and clathrin were identified by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF MS). Further studies demonstrated that HSC70 and TGEV M colocalized on the cell surface in early stages of TGEV infection; specifically, HSC70 bound M protein through its substrate-binding domain (SBD) and preincubation of TGEV with anti-M serum to block the interaction of M and HSC70 reduced the internalization of TGEV, thus demonstrating that the M-HSC70 interaction mediates the internalization of TGEV. Remarkably, the process of internalization was dependent on clathrin-mediated endocytosis (CME) in PK-15 cells. Furthermore, inhibition of the ATPase activity of HSC70 reduced the efficiency of CME. Collectively, our results indicated that HSC70 is a newly identified host factor involved in TGEV infection. Taken together, our findings clearly illustrate a novel role for TGEV M protein in the viral life cycle and present a unique strategy used by HSC70 to promote TGEV infection in which the interaction with M protein directs viral internalization. These studies provide new insights into the life cycle of coronaviruses. IMPORTANCE TGEV is the causative agent of porcine diarrhea, a viral disease that economically affects the pig industry in many countries. However, the molecular mechanisms underlying viral replication remain incompletely understood. Here, we provide evidence of a previously undescribed role of M protein in viral replication during early stages. We also identified HSC70 as a new host factor affecting TGEV infection. We demonstrate that the interaction between M and HSC70 directs TGEV internalization in a manner dependent on CME, thus revealing a novel mechanism for TGEV replication. We believe that this study may change our understanding of the first steps of infection of cells with coronavirus. This study should facilitate the development of anti-TGEV therapeutic agents by targeting the host factors and may provide a new strategy for the control of porcine diarrhea.


Asunto(s)
Clatrina , Proteínas M de Coronavirus , Endocitosis , Proteínas del Choque Térmico HSC70 , Virus de la Gastroenteritis Transmisible , Internalización del Virus , Virus de la Gastroenteritis Transmisible/fisiología , Clatrina/metabolismo , Proteínas M de Coronavirus/metabolismo , Línea Celular , Humanos , Animales , Replicación Viral
5.
BMC Med ; 20(1): 359, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2079420

RESUMEN

BACKGROUND: The severe fever with thrombocytopenia syndrome disease (SFTS), caused by the novel tick-borne SFTS virus (SFTSV), was listed among the top 10 priority infectious disease by World Health Organization due to the high fatality rate of 5-30% and the lack of effective antiviral drugs and vaccines and therefore raised the urgent need to develop effective anti-SFTSV drugs to improve disease treatment. METHODS: The antiviral drugs to inhibit SFTSV infection were identified by screening the library containing 1340 FDA-approved drugs using the SFTSV infection assays in vitro. The inhibitory effect on virus entry and the process of clathrin-mediated endocytosis under different drug doses was evaluated based on infection assays by qRT-PCR to determine intracellular viral copies, by Western blot to characterize viral protein expression in cells, and by immunofluorescence assays (IFAs) to determine virus infection efficiencies. The therapeutic effect was investigated in type I interferon receptor defective A129 mice in vivo with SFTSV infection, from which lesions and infection in tissues caused by SFTSV infection were assessed by H&E staining and immunohistochemical analysis. RESULTS: Six drugs were identified as exerting inhibitory effects against SFTSV infection, of which anidulafungin, an antifungal drug of the echinocandin family, has a strong inhibitory effect on SFTSV entry. It suppresses SFTSV internalization by impairing the late endosome maturation and decreasing virus fusion with the membrane. SFTSV-infected A129 mice had relieving symptoms, reduced tissue lesions, and improved disease outcomes following anidulafungin treatment. Moreover, anidulafungin exerts an antiviral effect in inhibiting the entry of other viruses including SARS-CoV-2, SFTSV-related Guertu virus and Heartland virus, Crimean-Congo hemorrhagic fever virus, Zika virus, and Herpes simplex virus 1. CONCLUSIONS: The results demonstrated that the antifungal drug, anidulafungin, could effectively inhibit virus infection by interfering with virus entry, suggesting it may be utilized for the clinical treatment of infectious viral diseases, in addition to its FDA-approved use as an antifungal. The findings also suggested to further evaluate the anti-viral effects of echinocandins and their clinical importance for patients with infection of viruses, which may promote therapeutic strategies as well as treatments and improve outcomes pertaining to various viral and fungal diseases.


Asunto(s)
Anidulafungina , Infecciones por Bunyaviridae , Virosis , Animales , Ratones , Anidulafungina/farmacología , Anidulafungina/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Bunyaviridae/tratamiento farmacológico , Clatrina , Receptor de Interferón alfa y beta , SARS-CoV-2 , Proteínas Virales , Virosis/tratamiento farmacológico
6.
Cell Mol Life Sci ; 79(6): 316, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1941440

RESUMEN

AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6-AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6-AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6-AXL-triggered endocytosis to enter cells.


Asunto(s)
Endocitosis , Péptidos y Proteínas de Señalización Intercelular , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/terapia , Clatrina/metabolismo , Clatrina/fisiología , Endocitosis/efectos de los fármacos , Endocitosis/genética , Endocitosis/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/fisiología , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/fisiología , Tirosina Quinasa del Receptor Axl
7.
Eur J Cell Biol ; 101(2): 151222, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1881962

RESUMEN

Clathrin-mediated endocytosis (CME) is the major route through which cells internalise various substances and recycle membrane components. Via the coordinated action of many proteins, the membrane bends and invaginates to form a vesicle that buds off-along with its contents-into the cell. The contribution of the actin cytoskeleton to this highly dynamic process in mammalian cells is not well understood. Unlike in yeast, where there is a strict requirement for actin in CME, the significance of the actin cytoskeleton to mammalian CME is variable. However, a growing number of studies have established the actin cytoskeleton as a core component of mammalian CME, and our understanding of its contribution has been increasing at a rapid pace. In this review, we summarise the state-of-the-art regarding our understanding of the endocytic cytoskeleton, its physiological significance, and the questions that remain to be answered.


Asunto(s)
Citoesqueleto de Actina , Clatrina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Membrana Celular/metabolismo , Clatrina/metabolismo , Citoesqueleto/metabolismo , Endocitosis/fisiología , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Virol Sin ; 37(3): 380-389, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1730151

RESUMEN

The recent COVID-19 pandemic poses a global health emergency. Cellular entry of the causative agent SARS-CoV-2 is mediated by its spike protein interacting with cellular receptor-human angiotensin converting enzyme 2 (ACE2). Here, by using lentivirus based pseudotypes bearing spike protein, we demonstrated that entry of SARS-CoV-2 into host cells was dependent on clathrin-mediated endocytosis, and phosphoinositides played essential roles during this process. In addition, we showed that the intracellular domain and the catalytic activity of ACE2 were not required for efficient virus entry. Finally, we showed that the current predominant Delta variant, although with high infectivity and high syncytium formation, also entered cells through clathrin-mediated endocytosis. These results provide new insights into SARS-CoV-2 cellular entry and present proof of principle that targeting viral entry could be an effective way to treat different variant infections.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Clatrina/metabolismo , Endocitosis , Humanos , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
9.
Biochem Biophys Res Commun ; 587: 69-77, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1540389

RESUMEN

The clathrin coat assembly protein AP180 drives endocytosis, which is crucial for numerous physiological events, such as the internalization and recycling of receptors, uptake of neurotransmitters and entry of viruses, including SARS-CoV-2, by interacting with clathrin. Moreover, dysfunction of AP180 underlies the pathogenesis of Alzheimer's disease. Therefore, it is important to understand the mechanisms of assembly and, especially, disassembly of AP180/clathrin-containing cages. Here, we identified AP180 as a novel phosphatidic acid (PA)-binding protein from the mouse brain. Intriguingly, liposome binding assays using various phospholipids and PA species revealed that AP180 most strongly bound to 1-stearoyl-2-docosahexaenoyl-PA (18:0/22:6-PA) to a comparable extent as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is known to associate with AP180. An AP180 N-terminal homology domain (1-289 aa) interacted with 18:0/22:6-PA, and a lysine-rich motif (K38-K39-K40) was essential for binding. The 18:0/22:6-PA in liposomes in 100 nm diameter showed strong AP180-binding activity at neutral pH. Notably, 18:0/22:6-PA significantly attenuated the interaction of AP180 with clathrin. However, PI(4,5)P2 did not show such an effect. Taken together, these results indicate the novel mechanism by which 18:0/22:6-PA selectively regulates the disassembly of AP180/clathrin-containing cages.


Asunto(s)
Clatrina/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Sitios de Unión , Encéfalo/metabolismo , COVID-19/metabolismo , COVID-19/virología , Línea Celular , Clatrina/química , Ácidos Docosahexaenoicos/química , Endocitosis/fisiología , Interacciones Microbiota-Huesped/fisiología , Humanos , Ratones , Proteínas de Ensamble de Clatrina Monoméricas/química , Proteínas de Ensamble de Clatrina Monoméricas/genética , Ácidos Fosfatidicos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/fisiología , Internalización del Virus
10.
J Virol ; 95(24): e0134521, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1441856

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, small interfering RNA (siRNA) interference, specific pharmacological inhibitors, and dominant negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin, and a low-pH environment but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV, has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis and provide clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis, which does not require a specific receptor, and clathrin-mediated endocytosis, which requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.


Asunto(s)
Infecciones por Coronavirus/virología , Deltacoronavirus/fisiología , Dinaminas/metabolismo , Endocitosis , Células Epiteliales/virología , Animales , Línea Celular , Supervivencia Celular , Clatrina/metabolismo , Coronavirus/genética , Concentración de Iones de Hidrógeno , Íleon/virología , Riñón/virología , Fosfatidilinositol 3-Quinasas/metabolismo , Pinocitosis , ARN Interferente Pequeño/metabolismo , Porcinos , Enfermedades de los Porcinos/virología , Internalización del Virus , Proteínas de Unión al GTP rab5/metabolismo
11.
PLoS Pathog ; 17(7): e1009706, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1305581

RESUMEN

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Internalización del Virus/efectos de los fármacos , Cloruro de Amonio/farmacología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Cloroquina/farmacología , Clatrina/metabolismo , Sinergismo Farmacológico , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Hidroxicloroquina/administración & dosificación , Macrólidos/farmacología , Niclosamida/administración & dosificación , Niclosamida/farmacología , Unión Proteica/efectos de los fármacos , Dominios Proteicos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología , Células Vero
12.
Sci China Life Sci ; 65(2): 341-361, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1245727

RESUMEN

Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.


Asunto(s)
Androstenos/farmacología , Clatrina/fisiología , Invaginaciones Cubiertas de la Membrana Celular/fisiología , Virus ADN/efectos de los fármacos , Proteína Niemann-Pick C1/fisiología , Virus ARN/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Virus ADN/fisiología , Proteína Niemann-Pick C1/antagonistas & inhibidores , Virus ARN/fisiología
13.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1160040

RESUMEN

Coronaviruses (CoVs) have caused severe diseases in humans and animals. Endocytic pathways, such as clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME), play an important role for CoVs to penetrate the cell membrane barrier. In this study, a novel CoV entry manner is unraveled in which clathrin and caveolae can cooperatively mediate endocytosis of porcine epidemic diarrhea coronavirus (PEDV). Using multicolor live-cell imaging, the dynamics of the fluorescently labeled clathrin structures, caveolae structures, and PEDV were dissected. During CavME of PEDV, we found that clathrin structures can fuse with caveolae near the cell plasma membrane, and the average time of PEDV penetrating the cell membrane was within ∼3 min, exhibiting a rapid course of PEDV entry. Moreover, based on the dynamic recruitment of clathrin and caveolae structures and viral motility, the direct evidence also shows that about 20% of PEDVs can undergo an abortive entry via CME and CavME. Additionally, the dynamic trafficking of PEDV from clathrin and caveolae structures to early endosomes, and from early endosomes to late endosomes, and viral fusion were directly dissected, and PEDV fusion mainly occurred in late endosomes within ∼6.8 min after the transport of PEDV to late endosomes. Collectively, this work systematically unravels the early steps of PEDV infection, which expands our understanding of the mechanism of CoV infection.IMPORTANCE Emerging and re-emerging coronaviruses cause serious human and animal epidemics worldwide. For many enveloped viruses, including coronavirus, it is evident that breaking the plasma membrane barrier is a pivotal and complex process, which contains multiple dynamic steps. Although great efforts have been made to understand the mechanisms of coronavirus endocytic pathways, the direct real-time imaging of individual porcine epidemic diarrhea coronavirus (PEDV) internalization has not been achieved yet. In this study, we not only dissected the kinetics of PEDV entry via clathrin-mediated endocytosis and caveolae-mediated endocytosis and the kinetics of endosome trafficking and viral fusion but also found a novel productive coronavirus entry manner in which clathrin and caveolae can cooperatively mediate endocytosis of PEDV. Moreover, we uncovered the existence of PEDV abortive endocytosis. In summary, the productive PEDV entry via the cooperation between clathrin and caveolae structures and the abortive endocytosis of PEDV provide new insights into coronavirus penetrating the plasma membrane barrier.


Asunto(s)
Caveolas/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Virus de la Diarrea Epidémica Porcina/metabolismo , Internalización del Virus , Animales , Línea Celular , Membrana Celular/virología , Chlorocebus aethiops , Infecciones por Coronavirus , Porcinos , Enfermedades de los Porcinos/virología , Células Vero
14.
J Biomol Struct Dyn ; 40(13): 5868-5879, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1052180

RESUMEN

The current pandemic resulted from SARS-CoV-2 still remains as the major public health concern globally. The precise mechanism of viral pathogenesis is not fully understood, which remains a major hurdle for medical intervention. Here we generated an interactome profile of protein-protein interactions based on host and viral protein structural similarities information. Further computational biological study combined with Gene enrichment analysis predicted key enriched pathways associated with viral pathogenesis. The results show that axon guidance, membrane trafficking, vesicle-mediated transport, apoptosis, clathrin-mediated endocytosis, Vpu mediated degradation of CD4 T cell, and interferon-gamma signaling are key events associated in SARS-CoV-2 life cycle. Further, degree centrality analysis reveals that IRF1/9/7, TP53, and CASP3, UBA52, and UBC are vital proteins for IFN-γ-mediated signaling, apoptosis, and proteasomal degradation of CD4, respectively. We crafted chronological events of the virus life cycle. The SARS-CoV-2 enters through clathrin-mediated endocytosis, and the genome is trafficked to the early endosomes in a RAB5-dependent manner. It is predicted to replicate in a double-membrane vesicle (DMV) composed of the endoplasmic reticulum, autophagosome, and ERAD machinery. The SARS-CoV-2 down-regulates host translational machinery by interacting with protein kinase R, PKR-like endoplasmic reticulum kinase, and heme-regulated inhibitor and can phosphorylate eIF2a. The virion assembly occurs in the ER-Golgi intermediate compartment (ERGIC) organized by the spike and matrix protein. Collectively, we have established a spatial link between viral entry, RNA synthesis, assembly, pathogenesis, and their associated diverse host factors, those could pave the way for therapeutic intervention.


Asunto(s)
COVID-19 , Interacciones Huésped-Patógeno , SARS-CoV-2 , COVID-19/virología , Clatrina/genética , Clatrina/metabolismo , Endocitosis , Humanos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Replicación Viral
15.
FASEB J ; 34(3): 4653-4669, 2020 03.
Artículo en Inglés | MEDLINE | ID: covidwho-832736

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a swine enteropathogenic coronavirus that causes significant economic losses in swine industry. Current studies on TGEV internalization mainly focus on viral receptors, but the internalization mechanism is still unclear. In this study, we used single-virus tracking to obtain the detailed insights into the dynamic events of the TGEV internalization and depict the whole sequential process. We observed that TGEVs could be internalized through clathrin- and caveolae-mediated endocytosis, and the internalization of TGEVs was almost completed within ~2 minutes after TGEVs attached to the cell membrane. Furthermore, the interactions of TGEVs with actin and dynamin 2 in real time during the TGEV internalization were visualized. To our knowledge, this is the first report that single-virus tracking technique is used to visualize the entire dynamic process of the TGEV internalization: before the TGEV internalization, with the assistance of actin, clathrin, and caveolin 1 would gather around the virus to form the vesicle containing the TGEV, and after ~60 seconds, dynamin 2 would be recruited to promote membrane fission. These results demonstrate that TGEVs enter ST cells via clathrin- and caveolae-mediated endocytic, actin-dependent, and dynamin 2-dependent pathways.


Asunto(s)
Gastroenteritis Porcina Transmisible/metabolismo , Gastroenteritis Porcina Transmisible/virología , Virus de la Gastroenteritis Transmisible/patogenicidad , Actinas/metabolismo , Animales , Caveolas/metabolismo , Caveolina 1/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Membrana Celular/virología , Clatrina/metabolismo , Dinamina II/metabolismo , Endocitosis/fisiología , Fusión de Membrana/fisiología , Porcinos , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA